Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 51
1.
Nat Neurosci ; 2024 Apr 29.
Article En | MEDLINE | ID: mdl-38684893

Reliable execution of precise behaviors requires that brain circuits are resilient to variations in neuronal dynamics. Genetic perturbation of the majority of excitatory neurons in HVC, a brain region involved in song production, in adult songbirds with stereotypical songs triggered severe degradation of the song. The song fully recovered within 2 weeks, and substantial improvement occurred even when animals were prevented from singing during the recovery period, indicating that offline mechanisms enable recovery in an unsupervised manner. Song restoration was accompanied by increased excitatory synaptic input to neighboring, unmanipulated neurons in the same brain region. A model inspired by the behavioral and electrophysiological findings suggests that unsupervised single-cell and population-level homeostatic plasticity rules can support the functional restoration after large-scale disruption of networks that implement sequential dynamics. These observations suggest the existence of cellular and systems-level restorative mechanisms that ensure behavioral resilience.

2.
Sci Adv ; 10(12): eadi4350, 2024 Mar 22.
Article En | MEDLINE | ID: mdl-38507489

Cortical excitatory neurons show clear tuning to stimulus features, but the tuning properties of inhibitory interneurons are ambiguous. While inhibitory neurons have been considered to be largely untuned, some studies show that some parvalbumin-expressing (PV) neurons do show feature selectivity and participate in co-tuned subnetworks with pyramidal neurons. In this study, we first use mean-field theory to demonstrate that a combination of homeostatic plasticity governing the synaptic dynamics of the connections from PV to excitatory neurons, heterogeneity in the excitatory postsynaptic potentials that impinge on PV neurons, and shared correlated input from layer 4 results in the functional and structural self-organization of PV subnetworks. Second, we show that structural and functional feature tuning of PV neurons emerges more clearly at the network level, i.e., that population-level measures identify functional and structural co-tuning of PV neurons that are not evident in pairwise individual-level measures. Finally, we show that such co-tuning can enhance network stability at the cost of reduced feature selectivity.


Interneurons , Neurons , Neurons/physiology , Interneurons/physiology , Pyramidal Cells/physiology , Homeostasis/physiology , Parvalbumins
3.
Proc Natl Acad Sci U S A ; 120(11): e2210439120, 2023 03 14.
Article En | MEDLINE | ID: mdl-36897982

How does neural activity drive muscles to produce behavior? The recent development of genetic lines in Hydra that allow complete calcium imaging of both neuronal and muscle activity, as well as systematic machine learning quantification of behaviors, makes this small cnidarian an ideal model system to understand and model the complete transformation from neural firing to body movements. To achieve this, we have built a neuromechanical model of Hydra's fluid-filled hydrostatic skeleton, showing how drive by neuronal activity activates distinct patterns of muscle activity and body column biomechanics. Our model is based on experimental measurements of neuronal and muscle activity and assumes gap junctional coupling among muscle cells and calcium-dependent force generation by muscles. With these assumptions, we can robustly reproduce a basic set of Hydra's behaviors. We can further explain puzzling experimental observations, including the dual timescale kinetics observed in muscle activation and the engagement of ectodermal and endodermal muscles in different behaviors. This work delineates the spatiotemporal control space of Hydra movement and can serve as a template for future efforts to systematically decipher the transformations in the neural basis of behavior.


Hydra , Animals , Hydra/physiology , Calcium , Muscles , Movement
4.
bioRxiv ; 2023 Jan 10.
Article En | MEDLINE | ID: mdl-36711889

Inter-species comparisons are key to deriving an understanding of the behavioral and neural correlates of human cognition from animal models. We perform a detailed comparison of macaque monkey and human strategies on an analogue of the Wisconsin Card Sort Test, a widely studied and applied multi-attribute measure of cognitive function, wherein performance requires the inference of a changing rule given ambiguous feedback. We found that well-trained monkeys rapidly infer rules but are three times slower than humans. Model fits to their choices revealed hidden states akin to feature-based attention in both species, and decision processes that resembled a Win-stay lose-shift strategy with key differences. Monkeys and humans test multiple rule hypotheses over a series of rule-search trials and perform inference-like computations to exclude candidates. An attention-set based learning stage categorization revealed that perseveration, random exploration and poor sensitivity to negative feedback explain the under-performance in monkeys.

5.
Neuron ; 110(22): 3661-3666, 2022 11 16.
Article En | MEDLINE | ID: mdl-36240770

We propose centralized brain observatories for large-scale recordings of neural activity in mice and non-human primates coupled with cloud-based data analysis and sharing. Such observatories will advance reproducible systems neuroscience and democratize access to the most advanced tools and data.


Brain , Neurosciences , Animals , Mice
6.
Cell Rep ; 38(13): 110574, 2022 03 29.
Article En | MEDLINE | ID: mdl-35354031

Many motor skills are learned by comparing ongoing behavior to internal performance benchmarks. Dopamine neurons encode performance error in behavioral paradigms where error is externally induced, but it remains unknown whether dopamine also signals the quality of natural performance fluctuations. Here, we record dopamine neurons in singing birds and examine how spontaneous dopamine spiking activity correlates with natural fluctuations in ongoing song. Antidromically identified basal ganglia-projecting dopamine neurons correlate with recent, and not future, song variations, consistent with a role in evaluation, not production. Furthermore, maximal dopamine spiking occurs at a single vocal target, consistent with either actively maintaining the existing song or shifting the song to a nearby form. These data show that spontaneous dopamine spiking can evaluate natural behavioral fluctuations unperturbed by experimental events such as cues or rewards.


Dopaminergic Neurons , Vocalization, Animal , Animals , Basal Ganglia/physiology , Dopamine/physiology , Learning/physiology , Vocalization, Animal/physiology
7.
Nat Neurosci ; 24(11): 1555-1566, 2021 11.
Article En | MEDLINE | ID: mdl-34697455

Dopamine plays a central role in motivating and modifying behavior, serving to invigorate current behavioral performance and guide future actions through learning. Here we examine how this single neuromodulator can contribute to such diverse forms of behavioral modulation. By recording from the dopaminergic reinforcement pathways of the Drosophila mushroom body during active odor navigation, we reveal how their ongoing motor-associated activity relates to goal-directed behavior. We found that dopaminergic neurons correlate with different behavioral variables depending on the specific navigational strategy of an animal, such that the activity of these neurons preferentially reflects the actions most relevant to odor pursuit. Furthermore, we show that these motor correlates are translated to ongoing dopamine release, and acutely perturbing dopaminergic signaling alters the strength of odor tracking. Context-dependent representations of movement and reinforcement cues are thus multiplexed within the mushroom body dopaminergic pathways, enabling them to coordinately influence both ongoing and future behavior.


Dopamine/metabolism , Dopaminergic Neurons/metabolism , Movement/physiology , Mushroom Bodies/metabolism , Reinforcement, Psychology , Smell/physiology , Animals , Dopaminergic Neurons/chemistry , Drosophila , Female , Microscopy, Fluorescence, Multiphoton/methods , Mushroom Bodies/chemistry , Odorants , Signal Transduction/physiology
8.
J Undergrad Neurosci Educ ; 19(2): A185-A191, 2021.
Article En | MEDLINE | ID: mdl-34552436

The 2019 Society for Neuroscience Professional Development Workshop on Teaching reviewed current tools, approaches, and examples for teaching computation in neuroscience. Robert Kass described the statistical foundations that students need to properly analyze data. Pascal Wallisch compared MATLAB and Python as programming languages for teaching students. Adrienne Fairhall discussed computational methods, training opportunities, and curricular considerations. Walt Babiec provided a view from the trenches on practical aspects of teaching computational neuroscience. Mathew Abrams concluded the session with an overview of resources for teaching and learning computational modeling in neuroscience.

9.
Neuron ; 109(13): 2047-2074, 2021 07 07.
Article En | MEDLINE | ID: mdl-34237278

Despite increased awareness of the lack of gender equity in academia and a growing number of initiatives to address issues of diversity, change is slow, and inequalities remain. A major source of inequity is gender bias, which has a substantial negative impact on the careers, work-life balance, and mental health of underrepresented groups in science. Here, we argue that gender bias is not a single problem but manifests as a collection of distinct issues that impact researchers' lives. We disentangle these facets and propose concrete solutions that can be adopted by individuals, academic institutions, and society.


Gender Equity , Research Personnel , Sexism , Universities/organization & administration , Female , Humans , Male , Research/organization & administration
10.
eNeuro ; 8(2)2021.
Article En | MEDLINE | ID: mdl-33931494
11.
Front Syst Neurosci ; 14: 60, 2020.
Article En | MEDLINE | ID: mdl-33013331

Single neurons can dynamically change the gain of their spiking responses to take into account shifts in stimulus variance. Moreover, gain adaptation can occur across multiple timescales. Here, we examine the ability of a simple statistical model of spike trains, the generalized linear model (GLM), to account for these adaptive effects. The GLM describes spiking as a Poisson process whose rate depends on a linear combination of the stimulus and recent spike history. The GLM successfully replicates gain scaling observed in Hodgkin-Huxley simulations of cortical neurons that occurs when the ratio of spike-generating potassium and sodium conductances approaches one. Gain scaling in the GLM depends on the length and shape of the spike history filter. Additionally, the GLM captures adaptation that occurs over multiple timescales as a fractional derivative of the stimulus envelope, which has been observed in neurons that include long timescale afterhyperpolarization conductances. Fractional differentiation in GLMs requires long spike history that span several seconds. Together, these results demonstrate that the GLM provides a tractable statistical approach for examining single-neuron adaptive computations in response to changes in stimulus variance.

12.
Cell ; 182(6): 1372-1376, 2020 09 17.
Article En | MEDLINE | ID: mdl-32946777

Large scientific projects in genomics and astronomy are influential not because they answer any single question but because they enable investigation of continuously arising new questions from the same data-rich sources. Advances in automated mapping of the brain's synaptic connections (connectomics) suggest that the complicated circuits underlying brain function are ripe for analysis. We discuss benefits of mapping a mouse brain at the level of synapses.


Brain/physiology , Connectome/methods , Nerve Net/physiology , Neurons/physiology , Synapses/physiology , Animals , Mice
13.
Nat Neurosci ; 23(8): 904-905, 2020 08.
Article En | MEDLINE | ID: mdl-32591766
14.
IEEE Trans Neural Syst Rehabil Eng ; 28(1): 248-257, 2020 01.
Article En | MEDLINE | ID: mdl-31567096

Designing brain-computer interfaces (BCIs) that can be used in conjunction with ongoing motor behavior requires an understanding of how neural activity co-opted for brain control interacts with existing neural circuits. For example, BCIs may be used to regain lost motor function after stroke. This requires that neural activity controlling unaffected limbs is dissociated from activity controlling the BCI. In this study we investigated how primary motor cortex accomplishes simultaneous BCI control and motor control in a task that explicitly required both activities to be driven from the same brain region (i.e. a dual-control task). Single-unit activity was recorded from intracortical, multi-electrode arrays while a non-human primate performed this dual-control task. Compared to activity observed during naturalistic motor control, we found that both units used to drive the BCI directly (control units) and units that did not directly control the BCI (non-control units) significantly changed their tuning to wrist torque. Using a measure of effective connectivity, we observed that control units decrease their connectivity. Through an analysis of variance we found that the intrinsic variability of the control units has a significant effect on task proficiency. When this variance is accounted for, motor cortical activity is flexible enough to perform novel BCI tasks that require active decoupling of natural associations to wrist motion. This study provides insight into the neural activity that enables a dual-control brain-computer interface.


Brain-Computer Interfaces , Efferent Pathways/physiology , Algorithms , Animals , Electric Stimulation , Entropy , Macaca nemestrina , Male , Motor Cortex/physiology , Psychomotor Performance/physiology , Reproducibility of Results , Torque , Wrist/physiology
15.
Curr Opin Neurobiol ; 58: 135-140, 2019 10.
Article En | MEDLINE | ID: mdl-31569061

The concept of 'neural coding' supposes that neural firing patterns in some sense represent some external correlate, whether sensory, motor, or structural knowledge about the world. While the implied existence of a one-to-one mapping between external referents and neural firing has been useful, the prevalence of adaptation challenges this. Adaptation provides neural responses with dynamics on timescales that range from milliseconds up to many seconds. These timescales are highly relevant for sensory experience in the natural world, in which local statistical properties of inputs change continuously, and are additionally altered by active sensing. Adaptation has a number of consequences for coding: it creates short-term history dependence; it engenders complex feature selectivity that is time-varying; and it can serve to enhance information representation in dynamic environments. Considering how to best incorporate adaptation into neural models exposes a fundamental dichotomy in approaches to the description of neural systems: ones that take an explicitly 'coding' perspective versus ones that describe the system's dynamics. Here we discuss the pros and cons of different approaches to the modeling of adaptive dynamics.


Adaptation, Physiological , Neurons
16.
Curr Biol ; 29(15): 2509-2516.e5, 2019 08 05.
Article En | MEDLINE | ID: mdl-31327719

Mosquitoes rely on the integration of multiple sensory cues, including olfactory, visual, and thermal stimuli, to detect, identify, and locate their hosts [1-4]. Although we increasingly know more about the role of chemosensory behaviors in mediating mosquito-host interactions [1], the role of visual cues is comparatively less studied [3], and how the combination of olfactory and visual information is integrated in the mosquito brain remains unknown. In the present study, we used a tethered-flight light-emitting diode (LED) arena, which allowed for quantitative control over the stimuli, and a control theoretic model to show that CO2 modulates mosquito steering responses toward vertical bars. To gain insight into the neural basis of this olfactory and visual coupling, we conducted two-photon microscopy experiments in a new GCaMP6s-expressing mosquito line. Imaging revealed that neuropil regions within the lobula exhibited strong responses to objects, such as a bar, but showed little response to a large-field motion. Approximately 20% of the lobula neuropil we imaged were modulated when CO2 preceded the presentation of a moving bar. By contrast, responses in the antennal (olfactory) lobe were not modulated by visual stimuli presented before or after an olfactory stimulus. Together, our results suggest that asymmetric coupling between these sensory systems provides enhanced steering responses to discrete objects.


Aedes/physiology , Mosquito Vectors/physiology , Smell , Vision, Ocular , Animals , Cues , Female
17.
Annu Rev Vis Sci ; 5: 427-449, 2019 09 15.
Article En | MEDLINE | ID: mdl-31283447

Adaptation is a common principle that recurs throughout the nervous system at all stages of processing. This principle manifests in a variety of phenomena, from spike frequency adaptation, to apparent changes in receptive fields with changes in stimulus statistics, to enhanced responses to unexpected stimuli. The ubiquity of adaptation leads naturally to the question: What purpose do these different types of adaptation serve? A diverse set of theories, often highly overlapping, has been proposed to explain the functional role of adaptive phenomena. In this review, we discuss several of these theoretical frameworks, highlighting relationships among them and clarifying distinctions. We summarize observations of the varied manifestations of adaptation, particularly as they relate to these theoretical frameworks, focusing throughout on the visual system and making connections to other sensory systems.


Adaptation, Physiological/physiology , Models, Neurological , Visual Perception/physiology , Acclimatization , Humans
18.
Elife ; 82019 05 13.
Article En | MEDLINE | ID: mdl-31081753

Cognitive flexibility likely depends on modulation of the dynamics underlying how biological neural networks process information. While dynamics can be reshaped by gradually modifying connectivity, less is known about mechanisms operating on faster timescales. A compelling entrypoint to this problem is the observation that exploratory behaviors can rapidly cause selective hippocampal sequences to 'replay' during rest. Using a spiking network model, we asked whether simplified replay could arise from three biological components: fixed recurrent connectivity; stochastic 'gating' inputs; and rapid gating input scaling via long-term potentiation of intrinsic excitability (LTP-IE). Indeed, these enabled both forward and reverse replay of recent sensorimotor-evoked sequences, despite unchanged recurrent weights. LTP-IE 'tags' specific neurons with increased spiking probability under gating input, and ordering is reconstructed from recurrent connectivity. We further show how LTP-IE can implement temporary stimulus-response mappings. This elucidates a novel combination of mechanisms that might play a role in rapid cognitive flexibility.


Cognition/physiology , Exploratory Behavior/physiology , Nerve Net/physiology , Neurons/physiology , Animals , Hippocampus/physiology , Humans , Long-Term Potentiation/physiology , Models, Neurological , Rest/physiology
19.
Proc Natl Acad Sci U S A ; 116(19): 9592-9597, 2019 05 07.
Article En | MEDLINE | ID: mdl-31015294

Performing a stereotyped behavior successfully over time requires both maintaining performance quality and adapting efficiently to environmental or physical changes affecting performance. The bird song system is a paradigmatic example of learning a stereotyped behavior and therefore is a good place to study the interaction of these two goals. Through a model of bird song learning, we show how instability in neural representation of stable behavior confers advantages for adaptation and maintenance with minimal cost to performance quality. A precise, temporally sparse sequence from the premotor nucleus HVC is crucial to the performance of song in songbirds. We find that learning in the presence of sequence variations facilitates rapid relearning after shifts in the target song or muscle structure and results in decreased error with neuron loss. This robustness is due to the prevention of the buildup of correlations in the learned connectivity. In the absence of sequence variations, these correlations grow, due to the relatively low dimensionality of the exploratory variation in comparison with the number of plastic synapses. Our results suggest one would expect to see variability in neural systems executing stereotyped behaviors, and this variability is an advantageous feature rather than a challenge to overcome.


Models, Neurological , Songbirds/physiology , Stereotyped Behavior/physiology , Vocalization, Animal/physiology , Animals
20.
Nat Neurosci ; 22(3): 329-330, 2019 03.
Article En | MEDLINE | ID: mdl-30742118
...